Long-range interaction between the P2.1 and P9.1 peripheral domains of the Tetrahymena ribozyme.
نویسندگان
چکیده
The Tetrahymena ribozyme possesses peripheral domains, termed P9.1 and P9.2. They are nonessential in the mechanism of the catalytic reaction but contribute to enhance the catalytic activity of the ribozyme. It has been postulated that P9.1 is capable of forming Watson-Crick base pairings with another peripheral domain, P2.1. We report here the existence of long-range base pairings between the loop regions of these two domains and show that this interaction apparently plays a role in enhancing the catalytic activity of the ribozyme.
منابع مشابه
A peripheral element assembles the compact core structure essential for group I intron self-splicing
The presence of non-conserved peripheral elements in all naturally occurring group I introns underline their importance in ensuring the natural intron function. Recently, we reported that some peripheral elements are conserved in group I introns of IE subgroup. Using self-splicing activity as a readout, our initial screening revealed that one such conserved peripheral elements, P2.1, is mainly ...
متن کاملPredicting the secondary structures and tertiary interactions of 211 group I introns in IE subgroup
The large number of currently available group I intron sequences in the public databases provides opportunity for studying this large family of structurally complex catalytic RNA by large-scale comparative sequence analysis. In this study, the detailed secondary structures of 211 group I introns in the IE subgroup were manually predicted. The secondary structure-favored alignments showed that I...
متن کاملAssembly of an exceptionally stable RNA tertiary interface in a group I ribozyme.
Group I intron RNAs contain a core of highly conserved helices flanked by peripheral domains that stabilize the core structure. In the Tetrahymena group I ribozyme, the P4, P5, and P6 helices of the core pack tightly against a three-helix subdomain called P5abc. Chemical footprinting and the crystal structure of the Tetrahymena intron P4-P6 domain revealed that tertiary interactions between the...
متن کاملStructure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have conducted a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. On...
متن کاملFast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
Formation of the P3-P7 pseudoknot structure, the core of group I ribozymes, requires long-range base pairing. Study of the Tetrahymena ribozyme appreciates the hierarchical folding of the large, multidomain RNA, in which the P3-P7 core folds significantly slower than do the other domains. Here we explored the formation of the P3-P7 pseudoknot of the Candida ribozyme that has been reported to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 9 شماره
صفحات -
تاریخ انتشار 1997